Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this article we critique resilience’s oft-celebrated overcoming of modern liberal frameworks. We bring work on resilience in geography and cognate fields into conversation with explorations of the ‘asymmetrical Anthropocene’, an emerging body of thought which emphasizes human-nonhuman relational asymmetry. Despite their resonances, there has been little engagement between these two responses to the human/world binary. This is important for changing the terms of the policy debate: engaging resilience through the asymmetrical Anthropocene framing shines a different light upon policy discourses of adaptive management, locating resilience as a continuation of modernity’s anthropocentric will-to-govern. From this vantage point, resilience is problematic, neglecting the powers of nonhuman worlds that are not accessible or appropriable for governmental use. However, this is not necessarily grounds for pessimism. To conclude, we argue that human political agency is even more vital in an indeterminate world.more » « less
-
Glass transitions from liquid to semi-solid and solid phase states have important implications for reactivity, growth, and cloud-forming (cloud condensation nuclei and ice nucleation) capabilities of secondary organic aerosols (SOAs). The small size and relatively low mass concentration of SOAs in the atmosphere make it difficult to measure atmospheric SOA glass transitions using conventional methods. To circumvent these difficulties, we have adapted a new technique for measuring glass-forming properties of atmospherically relevant organic aerosols. Aerosol particles to be studied are deposited in the form of a thin film onto an interdigitated electrode (IDE) using electrostatic precipitation. Dielectric spectroscopy provides dipole relaxation rates for organic aerosols as a function of temperature (373 to 233 K) that are used to calculate the glass transition temperatures for several cooling or heating rates. IDE-enabled broadband dielectric spectroscopy (BDS) was successfully used to measure the kinetically controlled glass transition temperatures of aerosols consisting of glycerol and four other compounds with selected cooling and heating rates. The glass transition results agree well with available literature data for these five compounds. The results indicate that the IDE-BDS method can provide accurate glass transition data for organic aerosols under atmospheric conditions. The BDS data obtained with the IDE-BDS technique can be used to characterize glass transitions for both simulated and ambient organic aerosols and to model their climate effects.more » « less
An official website of the United States government
